Monthly Archives: May 2017

Esri wkt字符串转proj.4 字符串的方法

使用gdal/ogr库进行转换 import os import sys import string import osgeo.osr prjfile=’~/proj4.prj’ srs.SetFromUserInput(prjfile) srs.MorphFromESRI() proj4 = srs.ExportToProj4() print proj4

esri Leave a comment

GeoMesa架构

GeoMesa架构 GeoMesa支持多种可扩展的、基于云端的数据存储架构,包括Apache Accumulo, Apache HBased,Google Cloud Bigtable以及用于流计算的Apache Kafka 。同时GeoMesa还可以和Apache Storm一起处理流数据,并使用Spark进行空间分析。 GeoMesa架构如图1: GeoMesa和GeoServer GeoMesa以GeoServer插件的形式为GeoServer提供了读取GeoMesa表的功能。在GeoServer中,GeoMesa表作为一种数据源存在,通过GeoServer,用户可以通过WMS/WFS的形式访问GeoMesa的数据。 GeoMesa表作为数据源,如图2: 与GeoMesa集成 为了方便用户使用GeoMesa中存储的数据,GeoMesa通过实现GeoTools接口,提供了使用OGC标准服务接口访问数据的能力,实现的OGC标准有: Web Feature Service (WFS) Web Mapping Service (WMS) Web Processing Service (WPS) Web Coverage Service (WCS) GeoMesa提供了多种导入数据的方式,包括GeoMesa命令行工具,Hadoop的map-reduce作业以及Apache Storm的实时数据流,如图3: GeoMesa的查询流程图如图4,通过GeoMesa API或GeoTools API,查询操作从Accumulo中数据读出: 键值对存储和Z曲线 GeoMesa的数据存储使用 key-value数据库。key-value数据库是一种NoSQL数据库,其数据按照键值对的形式进行组织、索引和存储。 Accumulo,HBase和Google Cloud Bigtable对这些键进行排序,并可将它们存储在任意数量的节点(服务器)上。 当使用key-value数据库时,Key的良好设计可以使应用程序更高效的运行。与关系数据库不同的是,key-value数据库中会频繁的使用key进行查询。例如在订单数据库中,会以订单号作为key进行存储,当用户查询订单的时候,即可用通过订单号直接查询到订单数据并返回该条数据。Accumulo,HBase和Cloud Bigtable都是使用类似的机制进行工作,GeoMesa同样也是使用该机制来进行数据组织。GeoMesa根据时空数据的特点,实现了生成包含时空信息的Key的算法,算法的基本思想如图5: 图中的红线被称为空间填充曲线,又称为Z曲线。该线顺序访问每个单元格一次,并且能够保证访问次序的唯一性。 Z曲线也能用于高分辨率地图,如图6: Z曲线上的每个点都可以赋予一个顺序值,通过这个顺序值,GeoMesa将经纬度表示为一个整数,这样就将二维数据降为一维数据,可以作为key-value数据库中的key使用。因为Z曲线支持多维数据,所以GeoMesa也支持将多维数据降为一维数据,作为key使用。 GeoMesa 索引 GeoMesa 索引的基本原理计算将三维(经度、纬度、时间)的数据按照Z曲线进行降维,得到一维数据作为Key使用,方便在key-value数据库中进行查询。 实际的Key结构比简单的键值对更复杂。在Accumulo中GeoMesa索引的结构如图7:

gis, OpenSource Leave a comment

GeoMesa介绍

GeoMesa 是由locationtech开源的一套地理大数据处理工具套件。其可在分布式计算系统上进行大规模的地理空间查询和分析。使用GeoMesa开源帮助用户管理、使用来自于物联网、社交媒体、手机应用的海量的时空(spatio-temporal)数据。 GeoMesa支持将海量的时空数据存储到Accumulo,HBase,Google Bigtable和Cassandra数据库中,并提供高效的索引来读取、查询这些数据。并支持通过指定空间条件(距离和范围)来快速查询。另外GeoMesa还基于Apache Kafka提供了时空数据的近实时流处理功能。 通过和GIS Server(GeoServer)的整合, GeoMesa 提供了通过标准OGC接口(WMS/WFS)访问数据的能力,通过这些接口,用户可以方便对GeoMesa处理的数据进行展示和分析,比如查询、直方图、时间序列分析等。 为什么选择GeoMesa 能够存储和处理海量时空数据 支持实时性强、需要快速读写的数据 支持spark分析 支持水平扩展 通过GeoServer提供地图服务,并支持Common Query Language (CQL) 项目地址 http://www.geomesa.org/‘ 授权 GeoMesa使用Apache License Version 2.0协议。 http://apache.org/licenses/LICENSE-2.0.html

gis, OpenSource Leave a comment